Intro to Graph Theory: Exploring the Four Color Problem With Math Models

Sarala

Learning Objectives

Basic Graph Theory Vocabulary
Types of Graph
Applications of Graph Theory

Graph Coloring

Win a UCLA Keychain

Why Model Math?

"Students who use accurate visual representations are six times more likely to correctly solve mathematics problems than are students who do not use them."
(Boonen, van Wesel, Jolles, \& van der Schoot, 2014)

What is a Graph

Data structures show relationships in computer science, biology, linguistics, and between many objects like web pages, programs, places, and people

Vertices can represent objects like courses or social media accounts.
Edges represent relationships like an order of courses or a social media friendships.

beyonce Follow Message +o ...

2,283 posts $\quad 319 \mathrm{M}$ followers $\quad 1$ following
Beyoncé
act ii COWBOY CARTER out now (3) www.beyonce.com +1

jayz
Follow 1 post $\quad 745 \mathrm{~K}$ followers $\quad 1$ following
e) rocnation.com

Data Structure

	Jay Z	Beyonce	Rihanna	J Lo	DJ Khaled	Lionel Messi
Jay Z						
Beyonce						
Rihanna						
J Lo						
DJ Khaled						
Lionel Messi						

Vocabulary

A graph is a set of vertices and edges that connect them
The precise way to represent this graph is to identify its set of vertices V :

$$
V=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{~F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{M}\},
$$

and its set of edges E between these vertices:

$$
E=\{A G, A B, A C, L M, J M, J L, J K, E D, F D, H I, F E, A F, G E\} .
$$

Ancand are incident vertices you get the point

Vocabulary

What does this graph look like?

$$
\begin{aligned}
& V=\{A, B, C, D, E, F, G\} \\
& E=\{A D, B D, F B C E, F G\} .
\end{aligned}
$$

Vocabulary

Path from vertex x to y in a graph is a list of vertices, in which successive vertices are connected by edges in the graph.

For example, BAFEG is path from B to G in the graph above.
A simple path has no vertex repeated. For example, BAFEGAC is not a simple path.

Vocabulary

Path from vertex x to y in a graph is a list of vertices, in which successive vertices are connected by edges in the graph.

For example, BAFEG is path from B to G in the graph above.
A simple path has no vertex repeated. For example, BAFEGAC is not a simple path.

Types of Graphs

A graph is connected if there is a path from every vertex to every other vertex in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece if picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: \{I, H\}, \{, K, L, M\} and $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$.

A complete graph has edges between every pair of vertices
An empty graph has no edges and just vertices

A planar graph has no edges that overlap

Types of Graphs

A graph is connected if there is a path from every vertex to every other vertex in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece if picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: $\{I, H\},\{J, K, L, M\}$ and $\{A, B, C, D, E, F, G\}$.

A complete graph has edges between every pair of vertices
An empty graph has no edges and just vertices

A planar graph has no edges that overlap

Types of Graphs

A graph is connected if there is a path from every vertex to every other vertex in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece if picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: $\{1, H\},\{, K, L, M\}$ and $\{A, B, C, D, E, F, G\}$.

A complete graph has edges between every pair of vertices

An empty graph has no edges and just vertices
A planar graph has no edges that overlap

Types of Graphs

A graph is connected if there is a path from every vertex to every other verte in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: $\{1, H\},\{, K, L, M\}$ and $\{A, B, C, D, E, F, G\}$.

A complete graph has edges between every pair of vertices

An empty graph has no edges and just vertices

A planar graph has no edges that overlap

Types of Graphs

A graph is connected if there is a path from every vertex to every other verte in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: $\{1, H\},\{, K, L, M\}$ and $\{A, B, C, D, E, F, G\}$.

A complete graph has edges between every pair of vertices
An empty graph has no edges and just vertices
A planar graph has no edges that overlap

Types of Graphs

A graph is connected if there is a path from every vertex to every other vertex in the graph. Intuitively, if the vertices were physical objects and the edges were strings connecting them, a connected graph would stay in one piece if picked up by any vertex.

A graph which is not connected is made up of connected components. For example, the graph above has three connected components: $\{1, H\},\{, K, L, M\}$ and $\{A, B, C, D, E, F, G\}$.

A complete graph has edges between every pair of vertices
An empty graph has no edges and just vertices
A planar graph has no edges that overlap

Which Graphs Are Planar?

Isomorphisms

Different models that represent graphs with the same set of vertice and edges are isomorphisms

Graphs G_{1} and G_{2}
$V=\{A, B, C, D, E\}$
$E=\{A B, B C, C D, D E, E A\}$

G_{1}

Which Graphs are Isomorphic

Graph Coloring

Let G be a graph and C be a set of colors,
for example $\mathrm{C}=\{$ black, white $\}$ or $\mathrm{C}=\{1,2\}$
A proper coloring of G by C is to assign a color from C to every vertex, such that in every edge vw, the vertices v and w have different colors.

G is k-colorable

Farm Color By Number

Which Graph is Has Proper Coloring?

Which Graph is Has Proper Coloring?

What is the max \# of colors in a properly colored graph?

What is the min\# of colors in a properly colored graph? this number is known as the chromatic number

Applications of Graph Coloring: Time Table

creating a time table with classes or exams that partially conflict

Applications of Graph Coloring: Time Table

creating a time table with classes or exams that partially conflict

Applications of Graph Coloring: Map Coloring

Each state represents a vertex

Applications of Graph Coloring: Map Coloring

Each state represents a vertex

Applications of Graph Coloring: Map Coloring

Each state represents a vertex Each edge represents a border And you have a map graph!

Are Map Graphs Planar or Nonplanar?

What is the Chromatic Number of Map Graphs?

Practice Graph Coloring Your Own Map!

Break of into groups of 4 Objective:
Color the graph with minimum colors

Laser Cutting Math Models

Laser cutting comprises of a few step:
Designing file (Inkscape or CorelDraw)
Saving as a .svg

Laser Cutting Math Models

Laser cutting comprises of a few step:

Designing file (Inkscape or CorelDraw)
Saving as a .svg
Printing on a laser cutter in a makerspace (UCLA has two!)
a) You can choose to raster, laser cut, or laser etch

